Magli, M. C. et al. Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Hum. Reprod. 15, 1781–1786 (2000).
Google Scholar
Mantikou, E., Wong, K. M., Repping, S. & Mastenbroek, S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim. Biophys. Acta 1822, 1921–1930 (2012).
Google Scholar
van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).
Google Scholar
Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009).
Google Scholar
Sandalinas, M. et al. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum. Reprod. 16, 1954–1958 (2001).
Google Scholar
Goddijn, M. & Leschot, N. J. Genetic aspects of miscarriage. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14, 855–865 (2000).
Google Scholar
Rubio, C. et al. Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum. Reprod. 18, 182–188 (2003).
Google Scholar
Kalousek, D. K. & Dill, F. J. Chromosomal mosaicism confined to the placenta in human conceptions. Science 221, 665–667 (1983).
Google Scholar
Starostik, M. R., Sosina, O. A. & McCoy, R. C. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 30, 814–825 (2020).
Google Scholar
Kasak, L., Rull, K., Vaas, P., Teesalu, P. & Laan, M. Extensive load of somatic CNVs in the human placenta. Sci. Rep. 5, 8342 (2015).
Google Scholar
Mertzanidou, A. et al. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum. Reprod. 28, 256–264 (2013).
Google Scholar
Fragouli, E. et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum. Reprod. 26, 480–490 (2011).
Google Scholar
Spinella, F. et al. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil. Steril. 109, 77–83 (2018).
Google Scholar
Handyside, A. H et al. Combined SNP parental haplotyping and intensity analysis identifies meiotic and mitotic aneuploidies and frequent segmental aneuploidies in preimplantation human embryos. Preprint at bioRxiv https://doi.org/10.1101/2024.11.17.623999 (2024).
Chavli, E. A. et al. Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts. J. Clin. Invest. 134, e174483 (2024).
Google Scholar
McDole, K. & Zheng, Y. Generation and live imaging of an endogenous Cdx2 reporter mouse line. Genesis 50, 775–782 (2012).
Google Scholar
Domingo-Muelas, A. et al. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 186, 3166–3181 (2023).
Google Scholar
Rajendraprasad, G., Rodriguez-Calado, S. & Barisic, M. SiR-DNA/SiR-Hoechst-induced chromosome entanglement generates severe anaphase bridges and DNA damage. Life Sci. Alliance 6, e202302260 (2023).
Google Scholar
Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun. 13, 6755 (2022).
Google Scholar
Sen, O., Saurin, A. T. & Higgins, J. M. G. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Sci. Rep. 8, 7898 (2018).
Google Scholar
Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).
Google Scholar
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).
Google Scholar
Rayon, T. Cell time: how cells control developmental timetables. Sci. Adv. 9, eadh1849 (2023).
Google Scholar
Sinha, D., Duijf, P. H. G. & Khanna, K. K. Mitotic slippage: an old tale with a new twist. Cell Cycle 18, 7–15 (2019).
Google Scholar
Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).
Google Scholar
Rieder, C. L. Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res. 19, 291–306 (2011).
Google Scholar
Fragouli, E. et al. The origin and impact of embryonic aneuploidy. Hum. Genet. 132, 1001–1013 (2013).
Google Scholar
Vazquez-Diez, C., Yamagata, K., Trivedi, S., Haverfield, J. & FitzHarris, G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc. Natl Acad. Sci. USA 113, 626–631 (2016).
Google Scholar
De Paepe, C. et al. Human trophectoderm cells are not yet committed. Hum. Reprod. 28, 740–749 (2013).
Google Scholar
Tarkowski, A. K., Suwinska, A., Czolowska, R. & Ozdzenski, W. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev. Biol. 348, 190–198 (2010).
Google Scholar
Posfai, E. et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6, e22906 (2017).
Google Scholar
Lorthongpanich, C., Doris, T. P., Limviphuvadh, V., Knowles, B. B. & Solter, D. Developmental fate and lineage commitment of singled mouse blastomeres. Development 139, 3722–3731 (2012).
Google Scholar
Korotkevich, E. et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247 (2017).
Google Scholar
Maiato, H. & Logarinho, E. Mitotic spindle multipolarity without centrosome amplification. Nat. Cell Biol. 16, 386–394 (2014).
Google Scholar
Chatzimeletiou, K. et al. Cytoskeletal analysis of human blastocysts by confocal laser scanning microscopy following vitrification. Hum. Reprod. 27, 106–113 (2012).
Google Scholar
Van Royen, E. et al. Multinucleation in cleavage stage embryos. Hum. Reprod. 18, 1062–1069 (2003).
Google Scholar
Corujo-Simon, E. et al. Human trophectoderm becomes multi-layered by internalization at the polar region. Dev. Cell 59, 2497–2505 (2024).
Google Scholar
Zielke, N. & Edgar, B. A. FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip. Rev. Dev. Biol. 4, 469–487 (2015).
Google Scholar
Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).
Google Scholar
Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into development and disease. Development 140, 3–12 (2013).
Google Scholar
Sher, N. et al. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. Proc. Natl Acad. Sci. USA 110, 9368–9373 (2013).
Google Scholar
Gardner, R. L. & Davies, T. J. Lack of coupling between onset of giant transformation and genome endoreduplication in the mural trophectoderm of the mouse blastocyst. J. Exp. Zool. 265, 54–60 (1993).
Google Scholar
Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).
Google Scholar
Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).
Google Scholar
Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).
Google Scholar
Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651 (2017).
Google Scholar
Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).
Google Scholar
Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).
Google Scholar
Song, J. X., Villagomes, D., Zhao, H. & Zhu, M. cGAS in nucleus: the link between immune response and DNA damage repair. Front. Immunol. 13, 1076784 (2022).
Google Scholar
Popovic, M. et al. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum. Reprod. 33, 1342–1354 (2018).
Google Scholar
Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).
Google Scholar
Zhu, M. et al. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. eLife 10, e65068 (2021).
Google Scholar
Rossant, J. & Lis, W. T. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70, 255–261 (1979).
Google Scholar
Stephenson, R. O., Yamanaka, Y. & Rossant, J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137, 3383–3391 (2010).
Google Scholar
Suwinska, A., Czolowska, R., Ozdzenski, W. & Tarkowski, A. K. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144 (2008).
Google Scholar
Berg, D. K. et al. Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–255 (2011).
Google Scholar
Mandal, P. K. & Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 568–582 (2013).
Google Scholar
Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In IEEE Winter Conference on Applications of Computer Vision (WACV) 3655–3662 (IEEE, 2020).
Corujo-Simon, E. et al. Mechanisms to prepare human polar trophectoderm for blastocyst implantation. Dev. Cell 59, 2497–2505.e4 (2024).
Google Scholar
Regin, M. et al. Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1. Hum. Reprod. 38, 1484–1498 (2023).
Google Scholar
Junyent, S. et al. The first two blastomeres contribute unequally to the human embryo. Cell 187, 2838–2854 (2024).
Google Scholar
Bucevicius, J., Keller-Findeisen, J., Gilat, T., Hell, S. W. & Lukinavicius, G. Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin. Chem. Sci. 10, 1962–1970 (2019).
Google Scholar
Moos, F. et al. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nat. Methods 21, 798–803 (2024).
Google Scholar
Delon, J. & Desolneux, A. A Wasserstein-type distance in the space of Gaussian mixture models. SIAM J. Imaging Sci. 13, 936–970 (2020).
Google Scholar
Toader, B. et al. Image reconstruction in light-sheet microscopy: spatially varying deconvolution and mixed noise. J. Math. Imaging Vis. 64, 968–992 (2022).
Google Scholar
Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).
Google Scholar
Abdelbaki, A. et al. Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors. Zenodo https://doi.org/10.5281/zenodo.16996800 (2025).
Abdelbaki, A. et al. Live imaging of late-stage preimplantation human embryos reveals de novo mitotic errors. Zenodo https://doi.org/10.5281/zenodo.16994339 (2025).