High-plex spatial RNA imaging in one round with conventional microscopes using color-intensity barcodes – Nature Biotechnology

High-plex spatial RNA imaging in one round with conventional microscopes using color-intensity barcodes – Nature Biotechnology


  • Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, J. et al. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat. Biotechnol. 42, 1735–1746 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, L. et al. Spatiotemporal omics for biology and medicine. Cell 187, 4488–4519 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schott, M. et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell 187, 3953–3972 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sountoulidis, A. et al. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol. 18, e3000675 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, T. et al. Rapid and signal crowdedness-robust in situ sequencing through hybrid block coding. Proc. Natl Acad. Sci. USA 120, e2309227120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622, 552–561 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vu, T. et al. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat. Commun. 13, 169 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, F. et al. Thermal-plex: fluidic-free, rapid sequential multiplexed imaging with DNA-encoded thermal channels. Nat. Methods 21, 331–341 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, R. et al. DNA-sequence-encoded rolling circle amplicon for single-cell RNA imaging. Chem 4, 1373–1386 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le, T. N. et al. GABAergic interneuron differentiation in the basal forebrain is mediated through direct regulation of glutamic acid decarboxylase isoforms by Dlx homeobox transcription factors. J. Neurosci. 37, 8816–8829 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, T. et al. Spatiotemporal characterization of human early intervertebral disc formation at single-cell resolution. Adv. Sci. 10, 2206296 (2023).

    Article 
    CAS 

    Google Scholar 

  • Nóbrega-Pereira, S. et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Striedter, G. F. & Northcutt, R. G. The independent evolution of dorsal pallia in multiple vertebrate lineages. Brain Behav. Evol. 96, 200–211 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kaiser, K. et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat. Commun. 10, 1498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chitra, U. et al. Mapping the topography of spatial gene expression with interpretable deep learning. Nat. Methods 22, 298–309 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • So, J., Kim, A., Lee, S.-H. & Shin, D. Liver progenitor cell-driven liver regeneration. Exp. Mol. Med 52, 1230–1238 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, K., Wang, F.-S. & Xu, R. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol. Immunol. 18, 38–44 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment. Theranostics 12, 4163–4180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, Z. et al. Spatial transcriptomics reveals tryptophan metabolism restricting maturation of intratumoral tertiary lymphoid structures. Cancer Cell 43, 1025–1044 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proceedings of the 2018 International Conference of Medical Image Computing and Computer Assisted Intervention (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) (Springer, 2018).

  • Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (eds Ross, A., Cox, D. & McCloskey, S.) (IEEE, 2020).

  • Raj, A., Van Den Bogaard, P., Rifkin, S. A., Van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res. 49, e58 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marras, S. A. E., Bushkin, Y. & Tyagi, S. High-fidelity amplified FISH for the detection and allelic discrimination of single mRNA molecules. Proc. Natl Acad. Sci. USA 116, 13921–13926 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. et al. CIDRE: an illumination-correction method for optical microscopy. Nat. Methods 12, 404–406 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chalfoun, J. et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep. 7, 4988 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saunders, R. A. et al. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. Preprint at bioRxiv https://doi.org/10.1101/2024.11.18.624217 (2024).

  • Wheat, J. C. et al. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature 583, 431–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article 

    Google Scholar 

  • Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2005).

    Google Scholar 

  • Reina-Campos, M. et al. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 639, 483–492 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1–12 (2022).

    CAS 

    Google Scholar 

  • Chang, T. et al. PRISM: 2D HCC raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.13208941 (2024).

  • Chang, T. et al. PRISM: 2D embryo (30plex and 64plex) raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.13219763 (2024).

  • Chang, T. et al. PRISM: 3D mouse brain raw images and labeled RNA spots. Zenodo https://doi.org/10.5281/zenodo.12673246 (2024).

  • Chang, T. et al. PRISM: analysis related data. Zenodo https://doi.org/10.5281/zenodo.12755414 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *